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Summary of Results

Throughout this Phase I project, we have integrated a suite of nonlinear signal processing
algorithms derived from diffusion geometry into an existing proprietary Hyperspectral
processing toolbox. These methods enable the organization and comparison of spatio-
spectral features of hyperspectral images acquired under different conditions, for target
detection, change and anomaly assessment. The main ingredients in our approach involve
a high level “geometrization” of spatio spectral signatures.

In the first months of this project (see Appendix A), we developed an approach to
simultaneously segment a scene in terms of similarities of spatio spectral signatures at
different inference as well as a partition of the feature space of spectra and morphology
into groups of features related to the various locations on the scene. We refer to this
approach in which we interrogate and organize both the pixels and their responses as the
questionnaire organization paradigm described in Appendix A. This spectral
segmentation methodology is critical for change detection as it enables to isolate changes
by comparing their relation to their spatio-spectral folders. The folder identity provides
invariant features for change detection.

We have also developed a tool which enables the automated search in the image (viewed
as a data base) which operates as follows: The user identifies a number of reference
pixels in the scene (or in other scenes), and obtains an image in which only pixels, having
some affinity with the selected reference pixels, are displayed. Moreover as the affinity
among spectra is defined through the use of a local Mahalanobis distances, this tool can
find related pixels across various acquisitions. We have tested this methodology for
matching biological spectra across a data base of hyperspectral pathology slides acquires
with different instruments in different conditions, as well as on hyperspectral images of
Smith Island acquired on two different days for change detection.

The same methodology also extracts automatically independent components of the
spectrum building an empirical model of the constituents of the scene. It is precisely
through this model that most efficient target search and change detection can be
performed.

Plain Sight Systems, Inc. has collaborated with Dr. Coifman’s group in the Applied
Mathematics Department of Yale University for algorithm development, and has
integrated these methods into their proprietary Hyperspectral Explorer software package
for hyperspectral information organization and processing (Appendix D).

The main software development tasks have been finished and we are currently applying
and validating the methods to hyperspectral data of interest to the Air Force.

The enclosed reports (Appendix B & C) describe some of the algorithms that were tested

and developed in the latter months of Phase 1. It is expected that they will be simplified
considerably and enable real time change detection. We have mostly tested a variety of
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scaling and renormalizations that would stay invariant across instruments and
illumination conditions.

In the first report on anomaly and target detection (Appendix B), we have viewed the
local spectral covariance matrix as a good simple spectral invariant because it quantifies
the relation between a location to its most spectrally similar and spatially close points. As
shown, this approach is quite effective in isolating anomalous pixels. In the second
enclosed report (Appendix C), we introduce a number of mathematical calibration
methods to relate calibrated spectra on two days for change detection. Of course, this
method can easily be combined with the target detection approach of the first report.

As an illustration of results we look at an area near the beach on two different days (all
spectra are different). In the image below two daily images, a pixel indicated as red
below has been modified in its spectrum and is actually the only one detected, except for
the red area off the beach to the lower right which is simply change due to ocean wave
activity.

a) Day 1 {b) Day 2

e
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Summary of Theory

To summarize, an existing signal processing toolbox was augmented by methods
developed in Phase I to extract structure and information from heterogeneous images and
other data sets. These methodologies enable efficient integration and fusion of
heterogeneous image sources with information processing tasks and are particularly well
adapted to hyperspectral imagery in which spectral content can be integrated with
geometric image features.

The approach uses the network of inferences and similarities between the data points to
create robust nonlinear estimators for missing or noisy entries. This method enables
coherent analysis of data from a multiplicity of sources generalizing signal processing to
a nonlinear setting. By building empirical data models it achieves nonlinear decorrelation
and dimensionality reduction for intrinsic data structures.

We start by discussing feature based filtering and signal processing on graphs as a simple
way to understand the effect of introducing affinity (similarity) based diffusions on image
data. For simplicity of display, we start by considering a regular gray level image in
which we associate to each pixel p a vector v(p) of features. For example, a multiband

electromagnetic spectrum, a filter bank, or the simplest of all, a 5x5 subimage centered at
the pixel, or any combination of features as above. Define a Markov filter

L e @ [
" Y exp ) -v@) [ 1)

The image /(q) below was filtered using the (nonlinear in the features) procedure
described above where the feature vector is the 5x5 patch around a pixel.

exp({v(p) () [ /2)
S exp(u(p)=v(g") [ /2)

Observe that the edges are well preserved, as patches translated parallel to an edge are
similar and contribute more to the averaging procedure. We should also observe that if
we were to repeat the procedure on the filtered image we would get a numerical
implementation of various nonlinear heat diffusions for image processing as done by
Osher and Rudin.

I(p)=), 4, I(q)=). 1(q)

exp(-v(p) () [ /)

(It is useful to replace 4 by a Bi-Markovian version 4, , =
a(p)a(q)

2

where the weights are selected so that 4 is Markov in p and ¢.)
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The noisy IR image below was filtered using a vector of 25 statistical features associated
with each pixel

The Markov matrix used for filtering, defines a diffusion on the Graph of patches or
features viewed as a subset of 25 dimensional Euclidean space. The eigenvectors of this
diffusion permit us to compute all of its powers and to define a multiscale diffusion
geometry and signal processing on this “image graph”. (By viewing the image as a
function on its feature graph, in which v(p) are vertices and A4,  are the weights of the

edge between v(p)and v(q), we can analyze the image relative to its features.)

For the next example, consider 3 noisy sensors measuring the xyz-coordinates of a
trajectory in three dimensions .We could try to denoise each coordinate separately. Or use
the position vector as a feature vector as we did for the images above (in our case each
sensor could be the intensity of each spectral band and the denoising is achieved only
through comparison with location in the scene with similar spectra).
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The construction above should be viewed as signal processing, filtering, on the data
graph. We view all points of the trajectory as a data graph, i.e. data points p and g are
vertices and A4, is the weight of the edge connecting them measuring their similarity or

affinity at the smallest scale. We consider the eigenvectors of the Markov matrix 4,

defined above as a basis for all functions on this graph. We can then expand each
coordinate as a function on that graph, and restrict the expansion to the first few “low
frequency” eigenfunctions, i.e. filter it and use the filtered coordinates as a clean
trajectory. This generalizes the simple filtering done on images above see figure 3 below.

J setFilteringw 1MG.

Filtered Set

Fig3. The green, red and blue curves are respectively the coefficients of the xyz
coordinates, as filtered above, using less than 10 eigenvectors of the Markov matrix.

Diffusion Geometries

These simple examples indicate that diffusion and harmonic analysis are useful for
coherent sensor integration and fusion, enabling signal processing for nonlinearly
correlated data streams. Diffusion geometries enable the definition of affinities and

related scales between any digital data points in R" (provided of course that the
“infinitesimal proximity” in the coordinates corresponds to true affinity between data
points). Moreover it enables the organization of the population of sensor output into
“affinity folders” or subsets, at different scales, with a high level of affinity among their
responses.

In particular the eigenfunctions of the Diffusion operator or equivalently a Laplacian on a
graph provide useful empirical coordinates, which enable an embedding of the data to
low dimensional spaces so that the diffusion distance at time t on the original data
becomes Euclidean distance in the embedding, in effect providing a nonlinear version of
the SVD as well as a powerful dimensional reduction methodology. Moreover we
indicate how the diffusion at different times leads to a multiscale analysis generalizing
wavelets and similar scaling mechanisms.
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To be specific, let the bi-Markov matrix 4 defined above be represented in terms of its
eigenvectors, and define the diffusion map at time t into m dimensional Euclidean space

by

Ap,q - 22’12¢I(Xp)¢1(Xq)
X, > (B (X)) 46X, 43 (X)), 2,/ 8,(X,) = X,/

For a given t, we determine m so that 4 " is negligible. The diffusion distance at time t

between X, and X is given as

A (p.g)=A,,+4,,~24,,= D Z@X,)-4(x,) =X, - X[

As an application we show the advantage of using diffusion distance over ordinary
Euclidean distance, in the context of hyperspectral imagery and tracking. The
hyperspectral image below has three sets, labeled as green, red blue. The task is to
classify the rest of the image by spectral similarity to the labeled sets. A nearest neighbor
classifier using Euclidean distance fails due to regional drift in spectra while the diffusion
distance measuring all chains of similarity linking a given pixel to the labeled set does
remarkably well.

Conventional nearest neighbor search , compared with a diffusion search. The data is
a pathology slide ,each pixel is a digital document (spectrum below for each class )

256 X 256 image with 861 labeled pts CREEN (965 pt) ——_—

0 20 4 60 80 o 20 40 60 80

PINK (954 pts)

Extension to all points
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The diffusion map enables us to represent geometrically an abstract set of measurements
on a sensor array (measurement space) and measure directly diffusion distances in the
low dimensional representation. Diffusion geometry enables a multiscale organization
(in feature space) of pixels in a scene as illustrated in the following urban scene

Where the left is the original image while the right is spectrally segmented. This method
identifies not sensitive to the selection of bands or to illumination and atmospheric
distortions, thereby providing invariant features. The segmentation above is obtained by
clustering at different scales in the diffusion embedding space as seen below
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Another methodology for defining invariant spectral features will be described as
follows.

The next images illustrates the organizational ability of the diffusion maps on a collection

of images of the text “3D” imaged in various random orientations relative to the camera
and light as reordered by the diffusion mapping given by the first two nontrivial
eigenfunctions. We see that the intrinsic geometry has emerged automatically.

' B3m
‘ 039£D3D3D3D
%D 3D3D 3Bp3p3P

JS

Intrinsic parameterizations of hyperspectral images

As discussed previously it is possible to mathematically reparameterize spectral data to
enable robust structural change detection. This procedure extends the methodologies
described in [9]-[12] where PCA is used to renormalize spectral data to enable
comparison between two acquisitions. Here we use local whitening to build a global
explicit parameterization invariant under nonlinear perturbations of the spectrum,
calibrating the data independently of the measurement modes (or even sensors, provided
that they are affected by the same parameters).

More specifically, we let

_ exp((C, (0, -0, )10, -0,))+(C (0, -0, )10,~0,))
a(p)a(q)
Where C ' is the inverse of the covariance matrix of the spectra o in a small

A

P

region around p, and o is a spectrum at p ( or another feature vector which , such as, all 9

spectra in 3x3 block centered at p)

If we assume a generalized nonlinear Beer’s law i.e. that
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o =F(c,c,.c)=F(c)

where the vector ¢ represents the concentration (or “amount”) vector of 7 independent
constituents affecting the measured spectrum. Then we can find among the first few
eigenvectors of the matrix 4, » monotone functions of the » independent constituents in c,
(the underlying mathematical assumption is that the inverse of the covariance matrix is
the “square “ of the Jacobian of the inverse of F' from data to parameter c¢). We show that
the process of computing the eigenvectors of 4 solves a nonlinear differential equation
going from data to intrinsic parameters. Moreover we provide methodologies for
extending these eigenvectors @, (O'p) from the measured data to any vector O in the

same dimension.

This construction is a natural nonlinear generalization of principal component analysis as
well as independent component analysis. The remarkable property of this construction is
that any random encoding of O , say by projecting the spectra on a random collection of
r +1 vectors leads to the same parameterization of the independent constituents (with
high probability), thereby reducing the complexity of acquisition to the number of
relevant parameters, as opposed to full resolution spectra. In the picture below we show
that classification of tissue type can easily be achieved through a small number of
encoded light measurements

The image on the left is an RGB representation of the encoded measurements; whereas
on the right, they have been organized to by diffusion geometry to provide intrinsic
biological parameters quantifying tissue constituents. The image on the right is
independent of the selection of spectral encodings.

Fusion of spatial and spectral information

For change detection in a heterogeneous environment, we can view each set of features as
corresponding to different sensor, say spatial features, or spectral features, each category
of features can be parameterized and normalized in its intrinsic diffusion coordinates. A
new graph is then created combining the relevant diffusion coordinates emanating from
different species of features as coordinates. This goal can also be achieved through direct
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concatenation of spectral patches in the scene, the point being that the spatial distribution
of spectra may be a more robust indicator of change than single pixel-by-pixel match.
Moreover this methodology also provides a powerful registration tool as it enables the
matching of distributed spatio spectral features in both images independently of their
position.
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Appendix A: Hyperspectral Image Organization Through
Spectral “Questionnaires” (PowerPoint Presentation)
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Hyperspectal image on left is
organized into a diffusion graph,
displayed in terms of 3
coordinates of embedding.

The same image is segmented
into folders of pixels whose
spectra are similar, bottom left.
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Technical Report:
Target Detection Using Diffusion Geometry and
Local Covariance Matrices

1 Introduction

In this technical report we examine the target detection problem for hyperspec-
tral imagery (HSI) data. We denote the HSI data set as
L
X = {xij}i,;}:l C RP.

Here [ and w denote the physical dimensions of the data set, while D denotes
the spectral dimension. One may think of each z;; as a pixel vector in RP with
geographic coordinates given by (¢,7). We assume throughout the report that
||.13in2 =1 for all i, j

We shall consider targets to be small, anomalous features within the data set.
By small we mean a few pixels; by anomalous we mean that the target pixels
should be different than the surrounding background pixels.

2 The algorithm

The target detection algorithm can be broken into three main steps. In the first
step we compute a local covariance matrix for each pixel; the second step then
computes diffusion maps based on these local covariance matrices. Finally, the
targets are extracted from the diffusion maps.

2.1 Local covariance matrices

Consider the pixel z;;. To compute the local covariance matrix for z;;, we first
take a square ball around z;; of radius r. By square ball of radius r we just
mean a square with side length 2r +1 centered at z;;. We shall denote this ball
as By (z;;) and formally define it as:

By (zij) ={zpj € X i €ZNli—ryi+rIn[L1], j €Znj—rj+rINn[l,wl}.

We then take a local neighborhood from within the ball B,.(x;;). This neighbor-
hood is consists of x;; plus the k closest neighbors to z;; from within B, (z;;)



according to their inner product with x;;. Let y,, denote the elements of BT(xij)
sorted according to their inner product with z;;, so that:

(@ij, Ym) > (xij,yn) if and only if m < n.

Note that y; = x;;. We denote this neighborhood as Ny .(z;;) and formally
define it as:
Nk,r(mij) = {ym € BT(CEZ']') 1<m<k+ 1}

We then compute a (k4 1) x (k + 1) local covariance matrix C,,, from the
neighborhood Ny -(x5). Let pi, = mean(y,,); then the (m,n) entry of C,; is
given by:

1 D

(Cayy)mn = D_1 Z(ym(p) = tim) (Yn(P) = tin)-
p=1

These local covariance matrices capture the statistics of the spectral neighbors to
x;; that are within a prescribed geographic radius. One can see their usefulness
through the following examples.

2.1.1 Examples

Consider figure 1, which is a patch of dimension 31 x 31 x 161 depicting a road
cutting through grass. A 2 x 2 target has also been added, which in this case is
part of a house from elsewhere in the larger image.

Figure 1: Pseudo-color image of patch

In figure 2 we highlight a pixel taken from the grass (highlighted in blue), and
depict the boundary of its square ball of radius » = 2 (highlighted in green) as
well as its k = 5 closest neighbors (highlighted in red). The associated local



Figure 2: Grass pixel and neighbors

covariance matrix is given by:

0.0063 0.0062 0.0062 0.0062 0.0062 0.0062

0.0062 0.0062 0.0062 0.0062 0.0062 0.0062

c | 0.0062 0.0062 0.0063 0.0062 0.0062 0.0062
grass =1 0.0062 0.0062 0.0062 0.0063 0.0062 0.0062
0.0062 0.0062 0.0062 0.0062 0.0062 0.0062

0.0062 0.0062 0.0062 0.0062 0.0062 0.0062

We note that the local neighbors of this are also grass pixels, and as such have
similar spectral signatures. Thus the local covariance matrix is nearly a con-
stant (in this case 1/160) times a matrix of ones.

Now consider a second pixel, this one taken from the road; see figure 3. Notice
that the & = 5 closest neighbors are all taken from the road as well, and that
none come from the grass. This implies that the local covariance matrix of the
road pixel should be similar to the local covariance matrix of the grass pixel.
Indeed, the local covariance matrix of the road pixel is:

0.0063 0.0062 0.0062 0.0062 0.0062 0.0061
0.0062 0.0063 0.0062 0.0062 0.0061 0.0061
0.0062 0.0062 0.0062 0.0061 0.0060 0.0062
0.0062 0.0062 0.0061 0.0063 0.0062 0.0059
0.0062 0.0061 0.0060 0.0062 0.0063 0.0058
0.0061 0.0061 0.0062 0.0059 0.0058 0.0063

Croad =

Finally, we consider a pixel taken from the target house; see figure 4. Unlike
the previous two examples, since the target is both anomalous and small, some
of the neighbors of the target pixel must in fact not be spectrally similar. In



Figure 3: Road pixel and neighbors

Figure 4: Target pixel and neighbors




this case, two neighbors of the house pixel are grass pixels. As such, we would
expect the local covariance matrix to indicate this; indeed, we have:

0.0062 0.0062 0.0062
0.0062 0.0062 0.0062
o ~ | 0.0062 0.0062 0.0063
target = 0.0061 0.0061 0.0059
0.0042 0.0042 0.0042
0.0042 0.0042 0.0041

Computing the Frobenius norm (denoted || -

local covariance matrices, we get:

||Ograss - Croad”F
||Cg7'ass - Ctarget”F

||C7'oad - Ctarget ||F

0.0061 0.0042 0.0042
0.0061 0.0042 0.0042
0.0059 0.0042 0.0041
0.0063 0.0041 0.0042
0.0041 0.0063 0.0062
0.0042 0.0063 0.0062

||7) of the differences between the

= 0.00092
= 0.0083
= 0.0078

Comparing, we see that the norm of the difference between the two non-target
(background) pixels is an order of magnitude smaller than the norm of the
difference between a target pixel and a background pixel.

2.2 Diffusion maps

Using the local covariance matrices and the Frobenius norm we define the fol-

lowing distance on the data set A

d(l'ija mi’j’) = HCéEu

- Cwi’j’ ||F

As illustrated above, this distance has the property that the distance between
two background pixels will be small, whereas the distance between a background
pixel and a target pixel will be large. Using this distance, we define the following

kernel for the data set X:

_”Cz”

k(aﬁi]‘7 .’I?i/j/) =€

Now set

_C'Ii/j/ HF/E

, €>0.

wlwi) = Y ki, i),

Ty 0 cXx

and then define the normalized kernel p as:

p(ﬂ?ij, Zi/j') =

k(zij, zijr)

w(wij)

We now reorder the elements of X' so that they are in list form, and denote this

reordering as (slightly abusing notation):

X={x;}),, N=Il w



Define the N x N matrix P as:

Pij = p(zi, 7).

We compute the eigenvectors and eigenvalues of P, which we denote as {1; §V:51

and {\; 11, respectively. Note that ¢/ is constant and that 1 = \g > |Ay| >
|[A2] > .... The diffusion mapping is then given by:

zp = W(@i) = (Mva(i), ..., Asths (i) € R®.

In the above line s is defined to be the unique value such that:

Sy i

21 Al D=1 A
where 0 < 6§ < 1 is an accuracy parameter. Note that the eigenvalues will decay
very fast due to the fact that most pixels z; and z; will satisfy k(z;,z;) ~ 1.
Thus taking a large § would allow one to retain most of the information in the
diffusion embedding, but would still result in a small value of s. Furthermore,
due to the fast decay of the eigenvalues, in practice one need not compute all
of them, but rather a large enough amount so that the value of s is computed
accurately.

7

2.2.1 Example

We now return to the data set from figure 1. Setting r =2, k =5, ¢ = 1, and
4 = 0.99, we compute the local covariance diffusion map for this data set. Using
these parameters and the definition of s, we kept s = 7 eigenvectors. A scatter
plot of A\j11 versus A21)o is given in figure 5. The red circles correspond to the
target pixels, while the blue circles correspond to the remaining pixels. Figures
6 and 7 show the first two eigenvectors.

2.3 Extracting the targets

We now extract the targets based on the diffusion coordinates. As exhibited
in figure 5, the diffusion coordinates of the target pixels should be ’far away’
from the diffusion coordinates of the background pixels. Rather than computing
all pairwise diffusion distances though, we note that the diffusion norm of the
background pixels is small relative to the diffusion norm of the target pixels.
Therefore, to extract the targets, we examine the norm of each new diffusion
map, that is || ¥ (z;)]|2-

2.3.1 Example

We return once more to the data set from figure 1. Using the diffusion maps
computed in section 2.2.1, we compute the norm of the diffusion map for each
pixel. The results are given in figure 8. After suitable thresholding, the lower
size norms fall out and only the targets remain; see figure 9.
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Figure 5: Scatter plot of first two eigenvectors
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Figure 6: First eigenvector




Figure 7: Second eigenvector

Figure 8: Diffusion norms




Figure 9: Thresholded diffusion norms

3 Experiments

We now present some further experiments.

3.1 Multiple targets

We consider a 100 x 100 x 161 patch to which we have added 4 targets of various
sizes and materials; see figure 10 for a pseudo-color image. The four targets and
their dimensions are:

1. car, 1 x 2

2. part of a church, 3 x 3
3. pool, 2 x 2

4. house, 4 x 3

We ran the local covariance diffusion maps algorithm with the following settings:
r=3, k=15 ¢ =1, and § = 0.8. The number of eigenvectors retained was
s = 4. A scatter plot of the first two eigenvectors is shown in figure 11; the
colors represent the following pixels:

1. dark blue - background pixels
2. light blue - car

3. green - church

4. orange - pool

5. red - house



Figure 10: Pseudo-color image

church

The four eigenvectors are shown in figure 12. The norms of each pixel’s diffusion
map are given in figure 13; a thresholded version is given in figure 14.

3.1.1 Evaluation of results

Examining figures 13 and 14 more closely, we make the following points:

In figure 13 each target pixel is highlighted.

Also in figure 13 it appears that there may be some other cars on the road
that were part of the original image.

The brightest pixels are shown in figure 14. In this figure, we see that
at least one pixel from each target is highlighted. More specifically, the
entire house is highlighted, as well as the entire church; 3/4 pool pixels
are visible, and 1/2 car pixels are visible.

A closer examination of the two missing pixels in figure 14 reveals that
they are most likely mixed pixels, which could explain their lower intensity.

There is one faint false positive pixel in figure 14.

4 Possible Extensions

4.1

Generalized covariance matrices

Suppose that we normalize the data set X’ such that not only ||z;]2 = 1 but
also mean(x;;) = 0. The local covariance matrix for z;; would then be:

1 & 1
(Czij)mn = D_1 Zym(p)yn(p) = ﬁ<ymvyn>'

10
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Figure 1
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(a) Eigenvector 1

(c) Eigenvector 3

Figure 13

_

2: Eigenvectors

(b) Eigenvector 2

(d) Eigenvector 4

Diffusion norms

12



Figure 14: Thresholded diffusion norms

3

2.8

26

H24

H2.2

FH2

Thus we are using the inner product as a measure of the similarity between
x;; and the pixels y,, in its local neighborhood. We could perhaps improve the
results by using a more sophisticated measure of similarity, which we denote by
the general function f. Thus we have a generalized covariance matrix:

(Cwij)mn = f(ymayn)'

13
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Technical Report: Change Detection Using
Diffusion Geometry

1 Introduction

In this technical report we examine the change detection problem for hyperspec-
tral imagery (HSI) data. We assume that we have two hyperspectral data sets
XM and X®@ which depict the same scene, but were taken at different times:

@ = {x (1)} ,C RD.

2) _ {$(2)}l W - C RD

Here [ and w denote the physical dimensions of the data set, while D denotes
the spectral dimension. One may think of each :UE;‘) as a pixel vector in RP
with geographic coordinates given by (i, j). These coordinates are collected in
the set Z, i.e.

T={(,j):iezZnLl, jeZn[luw]}

The idea behind change detection is to determine the anomalous changes that
occur from day one to day two. Atmospheric changes, changes in the lighting,
and other changes that affect the entire area should not be taken into account.

1.1 Data normalization

Without some sort of data normalization, accurately detecting changes between
the two days is nearly impossible. To that end we normalize both data sets so
that:

|| ||2 =1 and mean(z,; (o )) = 0.

Note that normalizing the norm so that it equals one for each data point seems
to be the key part. Setting the mean of each vector to zero seems to have less
influence on the final outcome; perhaps it is not necessary or something else is
more appropriate (such as subtracting out the mean of the data set).

2 Simple solutions

We present some possible simple solutions.



2.1 Inner product

One can use the inner product as a measure of similarity, i.e.:

d,»p(a:(»l») x(?)) = arccos((m(.l.) x(-2-)>). (2.1)

LYY VAR

See section 6 for some examples.

2.2 (? distance

One can use the ¢? distance as a measure of similarity, i.e.:

1 2 1 2
de (28}, 23) = ||28) — 2172 (2.2)

1.7’ U

See section 6 for some examples.

2.3 Total ¢? distance

One can also compare the distances within one day to the distances within the
second day. More specifically, we compute:

1
2

2
1 2 1 2 2
dtotal gz(l‘l(-j),xgj)) = Z |:dg2( ij ,xE/]),) - dg2( E]),.Z‘EIJ)/)} (23)
(i",5")eT

See section 6 for some examples.

2.4 PCA /2 distance

One can first compute the PCA mapping of each day, normalizing so that each
new dimension has variance one; denote this mapping as:

a) _ gale) oo d
cha) {.Z‘Z-j :(i,7) € I} C R

Note that the dimension d can either be selected or one can set it as the dimen-
sion required to retain a certain percentage of the energy in the data set. The
distance between pixels is then given by:

dpca (2}, 23)) = |2 — 32 |l2. (2.4)

3 Local coordinates for change detection

We compute new local coordmates for each data set. To do this we first take
a square ball around :c ) of radius . By square ball of radius r we just mean

a square with side length 2r 4+ 1 centered at x(a) We shall denote this ball as
B, (z; (o )) and formally define it as:

B (af)) = {aiy € X (i, ) € TN i —ryi+r] x [j = + 1]}



We then compute PCA coordinates for each ball, and retain 99% of the energy
(the 99% number can be changed of course); let d;; be the dimension required by

PCA to retain this amount of the energy We set {z } C R9 to denote the PCA

coordinates of B, ( ) and let H1 ), e ,,u d ) be the corresponding eigenvalues

of each PCA d1mens10n Before proceeding we normalize the PCA coordinates
so that each dimension has variance equal to one; that is we compute:

yz( ]) _ = Z’L(/]2 (1), RN ) Zzg/j), (dij)
M1 Ndij

We now mark the coordinates of the pixels in B,.(x (a)) that are spectrally close

to z;; in the PCA coordinates. Set r(a) = Hyla) l|l2; we compute:
T (a)sr) = {(5) < ) = i lla < 5"}

(@)

Using these coordinates we form a spectral neighborhood of z;; from within

the geographic ball B,.(z (a)).

NM( (s )_{x,“,es( V) (i 5) € T w (255 )

We now use this local neighborhood to compute three representative of :ci?)

which we will later use to compute graphs. The first of these is the average

(o), .
vector of erg?) (a:ij iT):

(a 1 Z o
(a)( 'LJ ; )‘ (i/’jl)el—,,.(q)( I ’T)
ij

To compute the other two, we first compute the D x D covariance matrix of
N(a)( b ):7), which we shall denote Ci(;‘). Let k = |IT§?)(Z‘§?);T)|, and note

that if & < D (which is usual), then the rank of C’i(;") is k. We then compute the

k nonzero eigenvalues of Ci(]q) and their corresponding eigenvectors; we denote
these two sets, respectively, as follows:

Ar(@l?) = D), A, (3.2)

Vo(@) = {ui[z{], . ol (3.3)

ij ij
Combining equations (3.1), (3.2), and (3.3), we have the following map on the
set X(*):
2 o (35, 8,0, Vi) (34)

ij ij i



3.1 Constructing the graphs and comparing them

Given the new coordinates defined in (3.4), we now use them to construct graphs
pertaining to X1 and X®). The weights of these graphs are given by the
following:

k 3

(03 [e3 1 —(« — (& (03 2

m@yﬂ%n—(z: (M)@ﬁ—@&wwyw> (3.5)
=1 )‘l('rij )

Taking o = 1 and a = 2 will give us two graphs, one for day one and one for
day two. We compare these two graphs in order to gain a similarity measure
1) ) This similarity measure is defined as:

between T, and T; -

2

2
1 2 1 1 2 2
diotat n, (@2 F) = [ D0 (el al)) = mo(al? 2] (3.6)
(7,5")€T

We can then plot the entries of diotal n, to get a two dimensional map depicting
which pixels changed and which did not. See section 6 for examples. Note that
the diotal o, map is like the dioia) ¢2 map, except that it is computed with these
new coordinates and with the distance defined by (3.5).

3.2 Diffusion maps

We can take the previous section one step further by computing diffusion maps
based on the distance defined in (3.5). More specifically, define the following
kernel:

(a) (a)
e (2, 22)) = e m e s, (3.7)
Now set
wre (a) Z krs Z] 71‘1%)1)
(i".d")€T

and then define the normalized kernel p, . as:

« «@ kT7 (xga)7x£:l)’)
Pre(@l® )y = 20 TS (3.8)

Z] 1Vl g (.UT’E (xg;l))

Let P}? be the N x N (where N = [-w) matrix associated with p, .(z Z(;l), xff?))
We compute the eigenvectors and eigenvalues of Pﬁ%), which we denote as
{1#2(0‘)}5\:0 and {g(“ }NSY, respectively. Note that wo is constant and that

1= 5((30‘) > \510‘)| > |§§a | > .... The s-dimensional diffusion mapping at time ¢
of day « is then given by:

vy = U () = ((5 ) w ), ...,(gga))t¢ga>(x§;>)) R,

4



We can now detect change by examining the following map:

1 2 2
pres(x) D) = |08, (@) — 02 (22 |.. (3.9)

See section 6 for examples.

Remark: See the appendix, sections 7.1 and 7.2, for a note on a technical issue
concerning the computation of the eigenmaps.

3.3 Symmetrizing the distance and the kernel

In the computation of the diffusion maps detailed in the previous section, 3.2,
both the distance 7, and the diffusion kernel PT(E were not symmetric. These
two issues can be remedied in the following ways. First, to address the issue
concerning 7., we can redefine the initial kernel given in equation (3.7) as follows:
P (@) (@) =@l @) @), (5?2
k (Jsl-j ,xi,j/)—e { i ]
Secondly, we can symmetrize the normalized kernel p, . given in equation 3.8
by redefining it as:

(@)

ﬁnE(mij 73”5?;)') =

where @&, . is defined the same as w, . except that it sums entries of l;m.

4 Global coordinates

We can modify the local coordinates described in section 3 to search globally
(geographically speaking) for spectral nearest neighbors, as opposed to the local
search described earlier. Mathematically speaking, this is equivalent to taking
r = oo above; however, we make a few algorithmic adjustments, as well as one
mathematical adjustment due to memory considerations.

Since we are performing a global search, we can apply PCA once to the entire
data set X(®); we denote this set as:

xo) = {7\ : (i,5) e T}y c RL

pca

As in the local version, we assume that this set has been normalized so that
the variance in each dimension is one. We also take as many dimensions as are
necessary to retain 99% of the energy.

For each pixel :z:(?)

take r(a) = ||x

we now perform a global search for spectral neighbors. We

ij ||2 to be the radius of the spectral ball that any neighbor must



fall within, and we also let kg denote the maximum number of neighbors we are
willing to allow (this is mainly due to memory considerations on the computer).
Formally, we define:

L @) = (@, 5) € T+ 35 - 352 < i)

ll]/
and

T (T, A% )) {(i',j"YeT: 5:5/0;), is one of the kg closest spectral neighbors of 55530‘)}
The neighbors of xf}l) are then given by:

Ny (1)) = {aff) € X 1 () € T (37)) N T (35)}-

As in section 3, we now compute the average vector of A " ko (J:Z(-C-Y)), as well

as its covariance matrix, CZ(JO‘ ). Let x( ) denote the average vector, and let

Aco ko (scgja)) and Veo i, (xgja)) denote the eigenvalues and eigenvectors of Cij ,
respectively. We then have the following map:

2 o (5 Aoy (05), Voo (057)) (4.1)

We also have the maps 7)o 1, and diotal Moo kg ? which are identical to 7, and
diotal n,., respectively, except for the fact that the new maps use the global
coordinates defined in (4.1). See section 6 for examples.

4.1 Diffusion maps

As in section 3.2, we can compute the diffusion maps based on 7oc ,. The
details are exactly same, except that 7, is replaced with 1. 1, We denote the
resulting diffusion similarity measure by poc.kq.e,t-

5 Comparing nearest neighbors

(1) to the nearest

(@)

To detect change one can compare the nearest neighbors of z;;

neighbors of a:( ). Let J\/k( ) denote the & closest spectral nelghbors toz;;, as

measured by the ¢2 dlstance and let Ty (z (a)) be their corresponding coordmates.

We first determine the common neighbors of mgjl) and xg); that is, we compute

the set: ) ) a
Tu(eyy) 2f)) = Tuley)) N Tu(el?).
The remaining neighbors are then paired so as to minimize the total spectral
difference. More specifically, define
Ky =k = Tuay) 2,

1] ) 1)



and let

N (x (a)) _ {x(a) GNk(ﬂ?E?)) (@5 & Tn(x (1) (2))} {x(w Oy — 1’..'7k§j}.

i’ 5’ ij ’Lj

We also set Sy to be the set of permutations on &’ elements. Finally, for each
coordinate pair (i,7) € Z, we compute

1 3751 17;2
dun (25}, 2)) = _min an“ ' (5.1)
kij 1=1

The nearest neighbor distance map, d,,, gives a measure of how much change
(1) ()

i and z;;

occurred between x;

6 Examples

6.1 Patch A

We consider the following 100 x 100 x 113 patch, for which pseudo-color images
from day one and day two are depicted in figure 1.

Figure 1: Pseudo-color images of patch A

(a) Day 1 (b) Day 2

6.1.1 Simple Solutions
The inner product map, d;,, defined in (2.1), and the ¢* distance map, dyz,
defined in (2.2), are shown in figure 2.

The total 2 distance map, diota) ¢2, defined in (2.3), is given in figure 3.

The PCA (2 distance map, dpca 2, defined in (2.4), was computed with d = 7
dimensions, the minimum number required so that both days’ mappings retain
at least 99% of the information. The result is given in figure 4.



Figure 2: d;, and dy2 similarity measures for patch A

(a) dip

Figure 3: diotal ¢2 similarity measure for patch A

Figure 4: dpca o2 similarity measure for patch A




6.1.2 Local coordinates for change detection

We ran the algorithm described in section 3 with r = 2. The dota1 5. graph
similarity measure, defined in (3.6), is shown in figure 5.

For the p, . diffusion similarity measure, defined in (3.9), we computed the
diffusion maps using € = 1, t = 1, and retained s = 20 eigenmaps; the results
are given in figure 6. Note that the sign of the eigenvectors was not corrected
(as described in section 7.1) for this particular experiment.

We also computed the p, . ; diffusion similarity measure using
¢ = @ = median {777,(171(,;“), ;z:g,(;),)2 (i, 9), (5" € I} ,

t =1, and retained s = 6 eigenmaps; the results are given in figure 7.

Figure 5: diotal o, (r = 2) local similarity measure for patch A

Figure 6: pres (r =2,¢ =1,¢t =1, s = 20) local diffusion similarity measure
for patch A




Figure 7: pre; (r=2,e = el@ t =1, s = 6) local diffusion similarity measure
for patch A

6.1.3 Global coordinates
We ran the algorithm described in section 4 with ky = 50. The total difference
map, diotal Moo ko for patch A is given in figure 8.

We also computed the corresponding diffusion maps, with

£ = £ — median {nwko (@ 2l (1.4), (', ) € I} ,

varying values of ¢, and s = 6. We synced the eigenmaps according to the
method outlined in section 7.1. The resulting diffusion similarity maps, pec. kq.e,¢
are given in figure 9.

Thirdly, we computed the corresponding diffusion maps by symmetrizing the
kernel according to section 3.3. We used £(®) defined correspondingly as:

e = &) = median {1oc,k (55, 25002 4 ey (25, 50+ (0.4, (7,5') € T},

and varied the values of . We used s = 100 eigenmaps, which were synchronized
according the method outlined in section 7.2. The resulting diffusion similarity
MAaPS, Poo,ke,e,t ar€ given in figure 10.

6.1.4 Comparing nearest neighbors

We ran the algorithm described in section 5 with £ = 20 and computed the map
dnp for patch A. The results are given in figure 11.

6.2 Patch B

We consider the following 96 x 119 x 113 patch, for which pseudo-color images
from day one and day two are depicted in figure 12.

10



Figure 8: diotal .. 4, (ko = 50) global similarity map for patch A

r -

6.2.1 Simple Solutions

The inner product map, d;,, defined in (2.1), and the ¢* distance map, de,
defined in (2.2), are shown in figure 13.

The total ¢2 distance map, dyotal ¢2, defined in (2.3), is given in figure 14.

The PCA (2 distance map, dpca ¢2, defined in (2.4), was computed with d = 6
dimensions, the minimum number required so that both days’ mappings retain
at least 99% of the information. The result is given in figure 15.

6.2.2 Local coordinates for change detection

We ran the algorithm described in section 3 with 7 = 2. The diotal o, graph
similarity measure, defined in (3.6), is shown in figure 16.

For the p, ., diffusion similarity measure, defined in (3.9), we computed the
diffusion maps using € = 1, t = 1, and retained s = 45 eigenmaps; the results
are given in figure 17. Note that the sign of the eigenvectors was not corrected
(as described in section 7.1) for this particular experiment.

We also computed the p, .+ diffusion similarity measure using

e = &(® = median {nr(x(a) 2N (0, 5), (i, 5) € I} ,

ij 14t
t =1, and retained s = 4 eigenmaps; the results are given in figure 18.

6.2.3 Global coordinates

We ran the algorithm described in section 4 with kg = 50. The total difference
map, diotal ne, k, for patch B is given in figure 19.
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Figure 9: poo kot (ko = 50, & = £(®) | t varying, s = 6) global diffusion similarity
maps for patch A
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Figure 10: Symmetrized and synchronized peo ko .e.¢ (ko = 50, & = £(@) t varying,
s = 100) global diffusion similarity maps for patch A

10y s

(h) t =128



Figure 11: d,,, nearest neighbor similarity measure for patch A

Figure 12: Pseudo-color images of patch B

Figure 13: d;), and dy2 similarity measures for patch B
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Figure 14: dioia) ¢2 similarity measure for patch B

Figure 16: diotal 5, (r = 2) graph similarity measure for patch B

o
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Figure 17: pyes (r=2,e=1,t =1, s = 45) local diffusion similarity measure
for patch B

Figure 18: py .+ (r=2,¢ = @ =1 5= 4) local diffusion similarity measure
for patch A
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We also computed the corresponding diffusion maps, with
_ (o) _ di (o) (a)\2 . [+ - ) T
e =& =median | Noo i, (x5 ;)" 1 (i,), (', 5°) € I ¢,
varying values of ¢, and s = 8. We synced the eigenmaps according to the

method outlined in section 7.1. The resulting diffusion similarity maps, pec.kq.e,¢
are given in figure 20.

Figure 19: diotal 5, 4, (ko = 50) global similarity map for patch B

6.2.4 Comparing nearest neighbors

We ran the algorithm described in section 5 with £ = 20 and computed the map
dpny for patch B. The results are given in figure 21.

6.3 Alternate patch B

We modified patch B, day 1, by placing a water pixel at row 37, column 58.
This pixel was originally vegetation. We then reran some of the experiments.
Results are given below.

6.3.1 Simple solutions

The PCA (2 distance map, dpca ¢2, defined in (2.4), was computed with d = 6
dimensions, the minimum number required so that both days’ mappings retain
at least 99% of the information. The result is given in figure 22.

6.3.2 Global coordinates

We used the same settings as described in section 6.2.3. The resulting dyotal Moo ko
map is given in figure 23, while the diffusion similarity maps poo i .+ are given
in figure 24.
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Figure 20: pookg.et (ko = 50, € = @t varying, s = 8) global diffusion
similarity maps for patch B
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Figure 21: d,, nearest neighbor similarity measure for patch B

Figure 22: dpca ¢2 similarity measure for alternate day 1 patch B
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We also computed the diffusion maps by symmetrizing the kernel according to
section 3.3. We used £(®) defined correspondingly as:

e = @ = median {77007;60 ($£7), :CE,(;),)Z + Moo ko (xE,O;)/, xE?))Q 2 (i,4),(i',5") € I} ,
and varied the values of t. We used s = 100 eigenmaps, which were synchronized
according the method outlined in section 7.2. The resulting diffusion similarity
MAaPS, Poo,ke,e,t ar€ given in figure 25.

Figure 23: diotal 5. ko (ko = 50) global similarity map for alternate day 1 patch
B
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Figure 24: poo ket (ko = 50, € = @t varying, s = 8) global diffusion
similarity maps for alternate day 1 patch B
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Figure 25: Symmetrized and synchronized peo ko .e.¢ (ko = 50, & = £(@) t varying,
s = 100) global diffusion similarity maps for alternate day 1 patch B

(h) t =128



7 Appendix

7.1 Synchronizing the sign of eigenmaps

When MATLAB computes the eigenmaps in the diffusion maps algorithm, they
are unique up to a sign change. When dealing with one data set, this is not
much of an issue. However, when dealing with two data sets, and subsequently
examining the ¢2-difference between each days’ diffusion coordinates, this can
lead to inaccuracies when trying to detect change. In order to address this issue,
we have implemented the following method for correction.

Given the two sets of eigenvectors, we compute the following s inner products:

@D, )
[N RIS

Note that the range of ¢ is [—1,1], and that if |¢(i)| is near one, then the
eigenvectors wgl) and wgz) are highly correlated. However, if d(i) < 0 as well,
then when computing the ¢? difference, these highly correlated eigenvectors will
actually appear far apart. Therefore, we make the following adjustment to the
signs of the eigenvectors of day 2:

9(i) =

.., 8.

9(i)] >0 and 9(i) <0 = P -,
where 6 is some preset measure of correlation.

Note: In the examples that employ this method, we have set 6 = 0.75.

7.2 Synchronizing the eigenmaps for maximum correla-
tion

We can take the method outlined above one step further, and synchronize the
eigenmaps in order to maximize their correlation. To do this, we compute the

following permutation (note that the eigenvectors @/zga) have norm one):
S
_ @ (2
o = arg max Zl [CORRTAN]
1=
We then map the day two eigenvectors as follows:

(2) (2)
1/}1' = wg(i)'

Finally, after permuting the day two eigenvectors, we make the appropriate sign
changes if the angle between two eigenvectors is greater than 90 degrees:

WM Py <o = PP - —p?®.
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We also permute the eigenvalues accordingly. First:
2 2
fi( ) 55;(1)'
And then secondly, after the permutation:

tMeP <0 = P P
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1 How this manual is organized

The goal of this manual is to guide a first-time user through the installation, setup and
first steps in using HyperSpectral Explorer, gaining progressively knowledge of the
capabilities of the software, and ultimately to master all its capabilities.
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2 Scope & Objectives

The main objectives of HyperSpectral Explorer are to provide the following:

2.i Data normalization, compression and denoising

Interface for initial manipulation of the collected data.

The type of manipulations we are referring to may include data denoising, compression,
normalization, computation of svd of the data, and possibly other data
selection/enanchement algorithms.

2.ii Data Exploration

Interface for algorithms for data exploration

This involves the development of a user-friendly, but still powerful (for the most
knowledgeable user) interface to various algorithms (either developed by the group or
described in papers etc...) for the exploration of data: among these, e.g., projections on
particular coordinates (svd, random projections), mainly for dimensionality reduction
purposes; nonlinear transformations (kernel eigenmap) for nonlinear dimension
reduction/parametrization; data (labelled/unlabelled) dynamic exploration in various sets
of coordinates (linear/non-linear)

2.iii Learning/discovering structures in the data

Interface for algorithms for discrimination

Development of a user-friendly interface to algorithms, developed by the group or
elsewhere, supervised or unsupervised, for data clustering and other discrimination tasks.
Learning algorithms may include Local Discriminant Bases for supervised feature
selection, fast hierarchical clustering techniques, unsupervised or partially supervised,
non-linear CART based on Laplacian eigenfunctions etc...The output of these algorithms
will be avilable to the user for further manipulations and exploration.

2.iv Data sonification

This part of the user interface will allow the user to map the original data, or any of its
representations in feauture spaces, to various sound spaces, using tunable maps and a
choice among different sound spaces. This allows the exploration of the data through
sounds, allowing the sonification of features as well as, possibly, the discovery of features
through sound exploration.

This capabilities may not be available on all installations or on all configurations.
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3 Installing the HyperSpectral Explorer

3.i Requirements
HyperSpectral Explorer requires Windows 2000 or XP operating system.

Version 1.0 of HyperSpectral Explorer also requires a licenced version of Matlab 6 (rev
13) to be installed locally, with license server either local or remote. Use of remote
Matlab servers has not been tested.

The current version of Hyperspectral Explorer is not compatible with versions of Matlab
superior to version 6 (release 13), since Mathworks does not guarantee forward
compatibility of the Matlab library functions.

The user needs administrator privileges to install and run HyperSpectral Explorer.
Moreover the user needs the maximum COM/DCOM/COM+ privileges: contact your
system administrator if you are not sure whether you have these and/or how to set them.

HyperSpectral Explorer also requires Microsoft XML Parser to be installed. This is
already installed during most installations of Windows XP, otherwise it needs to be
installed prior to the installation of HyperSpectral Explorer. The installation package can
be found at:

http:// www.microsoft.com/downloads/details.aspx?FamilyID=c0{86022-2d4c-4162-8{b&-

66bfc12f32b0&displaylang=en
or by Googling “Microsoft MSXML parser download”.

3.ii Starting the installation process

On the installation disk, simply run the executable file called setup.exe. This will start the
installation process.
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InstallShield Wizard

Welcome to the InstallShield Wizard for
HyperSpectral Explorer

The InstallShield® Wizard will install HyperS pectral
Explorer on wour computer. To continue, chck Mext.

3.iii Guide through the installation process

InstallShield Wizard

Customer Information

Please enter your infarmation.

Pleaze enter your name, the name of the comparw for whom pou work and the product
zerial number.

Lizer Warne:

Compary Marme:
|
Serial Humber:

I

<Back | et Canicel

Enter you name, company name, and any serial number.

Select a directory where to install
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“InstaliShield Wizard

Select Program Folder

Fleaze zelect a program folder.

Setup will add program icons to the Program Folder listed below. Y'ou may tepe a new falder
narme, or select one from the existing folders ist. Click Next o continue.

Program Folders:
]H_l,lperSpectraJ Esplarer

E xisting Folders:

Accessones
Administrative Tools
Games

M ath

Frinttde Internet Printing
Frogramrming

Startup

Litilities

< Back Mext > | Carcel

Setup will install HyperS pectral Esplorer in the following folder.

Ta inztall to this folder, click Mest. To install to a different falder, click Browse and select
atather falder.

Destination Folder

C:A. APlain Sight Svstems\HuperSpectral Explarer Browse. .

£ Back

Cancel ]

Select a folder where to install the shortcut to Hyperspectral Explorer.

The setup program will then install the Hyperspectral Explorer files in the specified
directory, add the shortcuts to the specified folder and add a shortcut on the desktop.

The software is now ready to run.
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4 Starting HyperSpectral Explorer

4.i Starting the installation process

Simply click on the icon in the PlainSight System folder created in the Start Menu during
the installation, or on the icon placed on the desktop:

=

HyperSpectral
Explorer

If neither icon is available, the executable will be in the installation directory and is
named prHyperSpectralExplorer.exe

4.ii Loading

During the loading phase, the HyperSpectral Explorer will show progress messages on
splash screen (colors may very depending on the system settings):

PLAIN SIGHT

= N S T E MM S

Loading HyperSpectral Explorer....

Comnee ety to Matlab

Loading time will vary according to the speed of the machine, memory available, security
settings and Matlab installation type (on the machine or remote). During loading,
HyperSpectral Explorer will connect to the currently registered version of Matlab (either
on that machine or a remote machine). This is usually the longest procedure during
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loading.
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5 Organization of the User Interface

5.i General Overview

Object Tree

Object PageViewer

SEL <]

P LEEIE =

Algorithm 1
Browser

2

Below is how HyperSpectral Explorer presents itself after loading (minor differences may

depend on your system configuration. the screen is divided into three main parts:

The three parts can be resized by using the vertical green slidebar separating the Object
PageViewer from the Object Tree and the Algorithm Browser, while the horizontal blue
slidebar can be used to redistribute the space between the Object Tree and the Algorithm

Browser.

At the top of the window there is a menu with some standard functionalities, while below
the menu there is a very useful toolbar, whose buttons allow to perform most actions on

the objects in the workspace.
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5.ii The Object Tree

The Object Tree, top left, represents the objects currently available to the user, divided
into conceptual categories or groups. Initially the tree is empty, only the object catogories
appear. When objects are loaded, manipulated and created, they appear in the branches of
tree. Right-clicking on various objects in the tree will activate pop-up menus that allow
the user to perform actions on the objects and make them interact.

—- == Datacubhes
== Examplel
== ExamplelOnS%wDBasis_0
== MormalizedData
= MormalizedData_rnd0

== Eigenlmage

= Examplel OnldbBasi _,:; it e e

—|- &= TrainingDatacubes

= Examplel _ﬁq—t Expand on vectors L

— IEI:I LabelSets }?f.:ﬁw Apply nonlinear map L4 MormalizedData_
ﬁl LabelSetl E .Extract subset I

= ﬂ TrainingSets Extract random subset

gF LabelSetd_Datan -
gl LabelSetl_DatalOnl =

=
—| == Expansions e

Wiew Descripkion
Wiew Log

= MNormalizedData_rndl Wit im me windo

—|- == Classifications
Save

=
x Delete abject

= MMClassification
= ./" Bases
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The object tree at the end of the tutorial in this manual may look as in the picture below.
Many objects have been created during the analysis of one initial data cube “Examplel”.
Some of then represent data cubes, but the third dimension has a meaning which is not a
spectral frequency, but a probability, or a coefficient of a projection onto some features.
There are also orthogonal bases among the objects created, as well as nonlinear maps, and
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training sets. Popup menus are accessed by selecting an element and right-clicking.
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5.iii The Object PageViewer

The Object PageViewer is a set of tabs, divided conceptually in the same categories as the
objects in the object tree, on each of which certain types of objects are visualized. The
categories are a (possibly strict, depending on system configuration) subset of:

- Preview: when _ : izaane |10 " L

t d to the ~< Expansions l =« Classifications e Bases l =~ Sonification |
;Ol’l(lilec (& th . Datacubes =~ TrainingDatacubes l ﬂ TrainingSets l

ar Ware, On ls page ,’.'ﬁi Viewer for _F':_“::;-f,--j l_. __| I\’_

the user will be able to |, " G

. . & A = 7

preview the images = = | =]|=ls
captured by the B Decomination WX

instrument, collect :

pictures, set the D=EH& ALT
parameters  for  the
collection, etc...This
option may or not be
available depending on
the connected hardware
and on the installation
options for the
hardware driver.

- Datacubes: on this page
datacubes and other
data are represented.
For example when the |
user loads a dataCUbe, a n bis’c r-iminatioﬁpreview L:J@_]'

|

viewer for the loaded i
object is displayed on D= H& 22 = |

this page. Essentially on 150

this page there should 100
be all the “working 50
objects” the user wants 0 lanreb :

to manipulate.

50

| L
A i =] on Ann 1A 440

— Training: on this page
the datasets that the
user chooses to use for training are displayed. These datasets are usually imported
from the set of “working objects” in the datacubes page. Objects on the datacubes
page can be moved onto the training page by right-clicking on the datacube object
in the object tree and choosing the action “Add to training set”.

- Classifications: the data on this page is the results of a classification task. It can be
a set of vectors with corresponding labels, represented with points in a vector space,
with colors indicating the corresponding labels.

- Bases: the data on this page represents basis objects, e.g. the basis vectors resulting

PLAIN SIGHT SYSTEMS — CONFIDENTIAL AND PROPRIETARY



from the run of a linear discriminant basis algorithm.

Expansions: the data on this page represents the image of some datacube object
under a linear or nonlinear mapping. For example the projection of a datacube
object onto its SVD basis.

Sonification: the data on this page is for sonification purposes. Not available in all
configurations.
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5.iv The Algorithm Browser

The Algorithm Browser, bottom left, is a multi-page collection of user interfaces linking
to various algorithms the user can apply on the available objects. It contains various
pages, depending on system (hardware/software) configuration, among the following:

Preview: parameters and actions related to the preview and collection of new
datacubes. Not available in all configurations.

Train: interface for building and merging labelled training sets.

Algorithms: interface to various algorithms that act on datacube objects and/or on
training objects.

Sonification: interface to various sonification algorithms.

PLAIN SIGHT SYSTEMS — CONFIDENTIAL AND PROPRIETARY



Refresh list of inputs.

Access training page

Inputs to algorithm Help button

Algorithms | Tfain ‘ Sonification
2 Nearest Neighbor Classifier
v =
. .gnlgorithm Pages inut =
List of 3 j
. = L7
algorithms 3

Labelled Training/Set || abelSetd_Data00nLdbB asis_ ~ |

Classify | Example10nSYDBasis 0 |
NormalizedD ata E
NormmalizedD ata_rnd0
Eigenlmage
v| Example10nlLdbBasis Sub [ Lo d

aplacian Eigenfun

/
LB PCA

g :
k7 e Parameters
£ =
5 © o - :
= = E stimation method LJ nearest neighbors
2 H
= = Metric: ieuclidean -
5
2
o
=
" =
S
2NN
=] =
-~ ]
o B
=
®
2
2] =
o o
]
£ E
@
= Run

/

Parameters of the algorithm
Run the algorithm

PLAIN SIGHT SYSTEMS — CONFIDENTIAL AND PROPRIETARY



6 Main Menu
6.i File Menu

Open
Open an existing Matlab, HSE, or PND file into HyperSpectral Explorer.

Save

Saves all the files in the current workspace to HSE format files.

Save Matlab workspace
Saves all the variables currently loaded in Matlab to a Matlab file.

Exit
Exits from HyperSpectral Explorer.

6.ii External Programs Menu

Connect to Matlab

Connect to the Matlab server registered on the machine (local or network matlab server).

Disconnect from Matlab

Disconnect from the Matlab server HyperSpectral Explorer is currently connected to. This
will cause all the variables currently in Matlab to be freed from memory and permantently
lost.

Matlab — Reset random number generator

Resets the random number generator in Matlab. This affects the runs of randomized
algorithms.

6.iii View Menu

View application log

Views the application log file, containing all the actions of the application since startup.
6.iv Windows Menu

Tile horizontally

Tiles the windows in the current page of the Object PageViewer horizontally.
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Tile vertically

Tiles the windows in the current page of the Object PageViewer vertically.
6.v Help Menu

Help
Shows this help in a window in HyperSpectral Explorer.

About

Shows the program title, version, authors.
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7 Getting Started: an example

We show some capabilities of the HyperSpectral Explorer through an example.

7.i Starting up and loading a file
Start up the HyperSpectral Explorer

Click on the Open button at the top left (or select the Open command from the File
menu)

The dialog box represented below will appear:

2 [u|s[m[a] | ae|=|x]

 Datacubes |  TrainingDatacubes | g T = o - Bases | = Sonification

(&%)
= | £ E-
[l ewvarizble_r. hse
< s
Algorithms ‘Tmm | sontication Flersme: [ Open

- Spectra Normalization Files of type:  [HSE fies (" hse) - Cancel ‘
= fes [ Fee
H ! 2
] 2

pectra Normalization
o
&

S

Principal Components

Go in the directory “Examples” in the installation directory of Hyperspectral Explorer.
Select “Matlab files” in the file type dropbox.
Choose the file named Examplel.mat and click ok.

The dialog box below will appear, asking which group the loaded variable should be
assigned to. Each object can be assigned to one or more data-groups, provided it is
compatible with them. Data-groups are useful to divide the various loaded objects into
classes with different properties, different roles in the algorithsm and different conceptual

types.
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Data Group Choice

Fleaze select one or more of the following datagroups:
viDatacubes

| TrainingDatacubes

| Labelsets

' Trainingsets

| Expansions

| Classifications

| Bases

'NonlinearMaps

I Sonification

Ok | Cancel

In the specific case, we assign the new variable to the “Datacubes” group. We will see
later how to assign the variable to other groups.

Click Ok to load the data (this may take a few seconds depending on the specifications of
your system, in particular cpu speed and available memory).
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7.ii Browsing through the data

The file will be loaded, and object called Examplel will be added to the Datacubes
branch in the object tree, and a Viewer for the object will be added to the Datacubes page
in the Object PageViewer. The algorithm browser will switch to the Datacubes page:

[ Wt e =

Ik = | A et | L Bass | 2 Sontticstion]

e =
B fiebaracubebxamplod

rie
loems| &2 20

Bun |

Pt iosre ok corneced

The dropbox at the top left allows for
different colouring of the datacube. A
single slices can be viewed in gray scale,
rgb, hsv and arbitrarily tuned color maps,
while multiple spectral slices can be
combined in two ways: three of them can
be combined by mapping them to rgb
(option 'custom'), or arbitrary linear
combinations of slices can be taken with
the 'equalizer' option.

The highlighted button sums all the slices
and displayes theirs sum in grayscale. For

D el s R oA R | E s

datacubes, this essentially shows the total
white-light response.
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The dropbox at the top left allows for
different colouring of the datacube. A
single slices can be viewed in gray scale,
rgb, hsv and arbitrarily tuned color maps,
while multiple spectral slices can be
combined in two ways: three of them can
be combined by mapping them to rgb
(option 'custom'), or arbitrary linear
combinations of slices can be taken with
the 'equalizer' option.

This dropbox allows for visualizing
different slices of the datacubes. One
dropbox is available for 'gray', 'rgb’,
'hsv','tuner’ choices of coloring, while 3 are
avaible when 'custom' is the choice of
coloring

The 'Show colorbar' button toggles the
color scale on the side of picture on and
off. The 'Zoom' button toggles on and off a
window at the bottom of the viewer where
the spectra of the selection is showed.
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CAUTION: The red button for closing the pictures window inside the browser
should never be used to close

As an exercise, you can reproduce the image above by setting the parameters in the data
cube browser and selecting the region of the data cube indicated above.
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7.iii Running your first algorithm
Let us go through some manipulations of the dataset.

First of all, we observe that the dimensionality of the data set is quite high: namely, 128.
However, these spectra are noisy and, without noise, we expect them to be smooth, hence
intrinsically lower dimensional. We thus decide to compute the principal components, and
to project onto the top few principal components. In order to do this, we select the
algorithm tab in the A/gorithm Browser and switch to the tab named “PCA”.

If the currently loaded datacube does not appear in the list of datacubes, press the refresh
button at the right of the datacube list.

Then:

- select “Examplel” in the list of input datacubes,

- move the slidebar corresponding to the “Number of PC's” to 10%, which means we want
to compute only 10% of 128=12 principal components,

- move the slidebar corresponding to “Number of random samples” to 8%, which means
that the principal components will be computed on a random subset of the spectra only, of
size 8% of 151*151 spectra which is approximately 1800 spectra out of about 22500. We
expect this to be rather accurate because the structure of the spectra does not seem that
complicated. The screen should now more or less look like this:

‘E HyperSpectral Explo
File  External Progr:

Wiew Windows  Help
2 |v|vlm(m] | 8la|s|x | |

 Datacubes | -~ TminlngDﬂlﬂcuhEsl o T | &E = ] 4 Easeﬁl & Sonification

#a] <)%

L

B Viewer for £

[=

7= 5 e e s S | | |
fighataC ubeExamplet - =

losESE #2e0

Algorithms iTram | Sonification

Principal Component Analysis

Allthe loaded datacubes,
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Now hit the Run button at the bottom of the algorithm page.

You will be asked for a name for the variable being created by the algorithm, which is
going to be an orthonormal set of vectors. We are going to call it “SVDBasis”. After
typing the name of the variable, click Ok.

After running, the algorithm will create a variable called “SVDBasis”, in the group
“Bases”.

Double click on “SVDBasis” in the Object Tree, and you will see the basis vectors
displayed in the “Bases” page view:

T

A Hy | Explorer Q
Fle Ex Opons Ve Windor

s el
2| e |-e|m|m| L ']a]a]X]
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g g | oo 2
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Number of PC il =l 2
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5 03
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g 04 -
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Run ‘JJ
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right click and select “View Description” to obtain information about this variable.
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7.iv Linear projections
Let us go through some manipulations of the dataset.

Now we want to project the original data cube onto this basis, thus reducing the
dimensionality from 128 to 12. This can be done in two equivalent ways, and in general
all the actions on any object can be performed analgously in these two ways.
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Save
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# Training=ets
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o SvDBasis
o+ Monlinearaps

=< Sonification

Using popup menus: select
Examplel int the Object
Tree and right-click with
the mouse.

A popup menu like in the
picture will appear. Select
“Expand on vectors” and
then “SVDBasis” in the
submenu.

Using the toolbar buttons:
select Examplel int the
Object Tree and then click
on the button “Expand on
basis” (you can see the
hints for each button
simply by resting the
mouse on the button for a
fraction of a second): the
list of available bases to

project onto will drop
down: click on
“SVDBasis”.
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Accept the choice of name for the new variable.
The algorithm will quickly run. Double-click on “ExamplelOnSVDBasis 0” to see a
browser for the result, or simply switch to the Datacube Page.

5 HyperSpectral Explorer =
e e e
A& {2 |v|¥=|m| L ala[sx | |
- A Datacubes s Dalﬁcubes' A TrainingDatacubes | g T | = ions | = cl | /- Bases|  sonification
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\ fca— ] :
e m——_— | +|[F 8/ S —
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& veremee B fichataCubsExample] OnSVDBasts_0 Althe baed detseubes | 2
gl TrainingSets il
- i Expansions cedas ®o 0
i i Classifications
=" {L. Bases

-+ svDBasis
v NorlinearMaps

& Sonification

Algorithms

Train | Sonification
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2
=
g é [ Input 2
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2
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Number of PC's: 5l =l g

10 % of componerts

Number of random samples: Al

Calculator

Basic
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ide

Browse through the various layers of the cube: there are 12 of them, one per principal
component computed, since each layer is the projection of the data cube onto the
corresponding principal component. Observe for example that the first layer essentially
represents the projection onto light-intensity (the variable with greatest variable in the
data cube), the other represent finer and finer variables.
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We can now project this new variable on the unit sphere: select the “Normalization”
algorithm tab, select “ExamplelOnSVDBasis 0” as input datacube, select L2 in the
“Spectrum Normalization” dropbox, and click the Run button.

Call “NormalizedData” the new variable when prompted for a name.
The resulting data cube will look something like this:

o
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7.v Nonlinear maps and projections

Suppose now we would like to find a good parametrization for the spectra in this data
cube, by using a nonlinear dimension reduction tool such as the Laplacian eigenfunctions.
The dataset is quite large, and while feasible on a standard PC, we would like to do a
quick computation, maybe paying a little in terms of precision. So we would like to
extract a relatively small random subset of “NormalizedData”, compute the Laplacian
eigenfunctions on this subset, and then extend them to the whole set.

In order to do this, select NormalizedData in the Object Tree.

Either right-clicking and select “Extract random subset”, or click the corresponding
button on the toolbar. Select a random subset size of about 1000-1500 samples, and
accept the default name “NormalizedData rnd0” for the new variable.

Go to the “Laplacian Eigenfunctions” algorithm tab.

Choose “NormalizedData rnd0” as input vector set.

Leave all the parameters as set by default, but change the parameter “Delta” to 0.4. This is
the width of the kernel used, since all the points in “NormalizedData” are on the unit
sphere, we want to localize the kernel at a scale smaller than the unit radius of that sphere.
Click the Run button, and choose “NormalizedData rnd0 eigenmap” and
“NormalizedData rnd0_eigenimage” as names for the output variables.

The Laplacian algorithm will create a Nonlinear map, that can now be applied (extended)
to any dataset of the correct dimensionality, and also the result of applying this nonlinear
map to the original data “NormalizedData rnd0” which was input to the algorithm: this is
a new variable which is automatically put in the “Expansions” group.

Now we would like to apply (extend) the whole map to the whole dataset. We select
“NormalizedData”, then right-click and select “Apply nonlinear map” and
“NormalizedData rnd0 eigenmap” in the submenu. Call the new variable “Eigenlmage”.
A datacube name “Eigenlmage” is created, the k-th layer representing the value of the k-th
eigenfunction evaluated on the spectrum of each pixel. Browse through the datacube to
get a feeling for this result.

PLAIN SIGHT SYSTEMS — CONFIDENTIAL AND PROPRIETARY



FOEREEE: |

= < Datacubes

Wi

Filo

lczua #oo

7.vi Super\}ised algorithms: LDB

All the algorithms we have been running till now were unsupervised, in the sense that no
training set nor classes to be learnt were sought nor were fed into the algorithms. When
one knows which classes he would like to classify and is able to indentify members of that
class, those can be used for training purposes, and algorithms can seek which variables
allow for good predictions of the desired classes.

We consider here the example of the supervised algorithm called Local Discriminant
Bases.

The first step is to construct a training set. To do so, we need to specify one or more data
cubes to be used for training purposes. We can pick our original datacube “Examplel”
and add it to the “TrainingDatacubes” group. To this, we can select “Examplel”, right-
click and select “Add to groups” (the same result can be obtained, as the user can
probably guess by now, by clicking on the “Add to groups” button in the toolbar). Then
we check the “Training Datacubes” group and click Ok. “Examplel” gets added to the
“TrainingDatacubes” group.

We now select the “Train” page, a tab side by side with the “Algorithms” tab. Now we
want to create a new training set, ie a set of vectors with corresponding labels. The
software distingushes between two concepts: label set' and 'training set'. The first one
denotes is a collection of labels associated to a subset of spectra from one or multiple
Training datacubes, the second one denotes a set of labelled vectors, however obtained.
Of course a supervised algorithm will act only on a training set. This is typically obtained
within the HyperSpectral Explorer by creating a label set’ and then 'building’ from it a
training set. Let us go through this process.
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At this point the software has created for us a /label set called “LabelSet0”, which allows
to put labels on points in the datacube “Examplel” only. If we had other datacubes in the
“TrainingDatacubes” group we would be able to add more of them to the pool available to
this label set. The user can also change the number of labels in the label set. For the
moment, 3 is the default and is good for our purposes.

Let us build the label set as follows. Select a region from the datacube as represented in
the picture below (green is label 1, blue is label 2, cyan is label 3), and label it accordingly
by clicking on the corresponding label button in the train page. If a selection is wrong,
simply select a region that is wrong and click the “Un-Select” button to erase any
selections in that region.

Try to select more or less the regions as in the picture below. These selections are
motivated by knowledge from pathology: class 1 essentially represents nuclei, class 2
cytoplasma, and class 3 is glass or other not very interesting stuff.
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At this point we have the desired label set. To build a training set, ie an actual set of
vectors with labels, press the “Build Training Set” button, which is hammer-shaped, and
the third button from the left. A TrainingSet called “LabelSet0 Data0” is created in the
“TrainingSets” group. By double-clicking on it one gets a picture similar to this:
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The color of the points represents the class., and a legend at the top of the figure is a
legend for the color-class correspondence. The points of different classes appear all mixed
up. But in which coordinates are we looking at them? Well, these coordinates are the
bottom coordinates of the spectrum, which are quite noisy, so it is not a surprise we
cannot see anything. Play a little with changing the coordinates. After browsing through
various coordinates and by rotating the axes a little, one could get a pictures like the
following:

which looks of course much more promising towards classifying points from the different
classes. Of course one has to get quite lucky, in general, to find such good coordinates.
Local Discriminant Bases is able to find coordinates such that the projection onto them
best preserves the discrimination between the classes. Each coordinate selected by the
algorithm is in general a complicated linear superposition of the original coordinates, so it
is much more flexible of what we just tried, which was to select just 3 among the original
coordinates.
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So let's go back to the “Algorithm” tab and select LDB. Let's keep the default parameters
(pretty good for rather general problems), and click Run. Let's call “LdbBasis” the output
of the algorithm. When the algorithm finishes running, we have a new basis, of 128
vectors, ordered by “discrimination power”. Let's select only the top 8 vectors, say, by
selecting “LdbBasis”, right-clicking and selecting “Extract Basis Subset”, and ticking
only the top 8 vectors. Double-clicking on “LdbBasis Sub 0” reveals the discrimination
vectors found:

The vector found during your experiment may be different, since they depend strictly on
the training set you chose.
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Let's project the original data cube “Examplel” onto this subset of the LdbBasis (select
“Examplel”, right-click, select “Expand on Vectors”, then LdbBasis_Sub_0) thus getting
a data cube called “Example] OnLdbBasis Sub 0 0”. It is instructive to browse through

1t.
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7.vii Supervised algorithms: Nearest Neighbors

We can view “ExamplelOnLdbBasis Sub 0 0” as intelligently dimensionally reduced
version of “Examplel”, where the dimensionality reduction was training set driven, for
the purpose of classification, in constrast with the “blind” principal components analysis
which compresses the data without any classification goal or information.

At this point we can run a nearest-neighbor classifier on the projection. In high dimension
it would be essentially bound to fail because of the high-dimensionality combined with
noise, but in lower dimension the data is less noisy, because of projection onto smooth
functions, and at the same time the LDB vector try not to lose too much discriminant
information.

So we first project the training set “LabelSet0 Data0” onto the top LDB vectors
LdbBasis Sub 0 (select “LabelSet0 Data0”, right-click, select “Expand on Basis”, select
LdbBasis Sub 0). We get “LabelSet0 Data0OOnLdbBasis Sub 0 0. Double-click on it
to see how well the coordinates found by LDB separate the classes of the training
samples:
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Then we go to the “NN Class.” algorithm. Select
“LabelSet0 Data0OnLdbBasis Sub 0 0” and “ExamplelOnLdbBasis Sub 0 0”, and
leave the other parameters as default. Click Run. Call the output “NNClassification”. A
data cube will be created, the k-th layer representing the probability of each pixel to be in
class k, and browse through or combine the layers:
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8.i Layout
This is how the Train page may look
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8.ii Definitions

8 Building Label Sets and Training Sets

et connazzod

A Label Set is simply a set of labels attached to corresponding vectors in one or more
datacubes. It is an enseble of graphical objects, not a set of vectors. A Label Set is defined
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by:

- the set of Training Datacubes from which labelled samples can be selected,

- the set of Labels that can be used (usually numbered from 1 to L)

A Label Set differs from a Training Set in that a Training Set is the set of vectors (living
in some N-dimensional vector space) with the labels attached, which can then be input to
any supervised classification algorithm. After defining the Label Set the user can Build a
Training Set from the Label Set by selecting the Build button from the Train toolbar at the
top of the Train page.

8.iii User Interface

Situated at the top of the Train page is a toolbar, that contains four icons:

1) New label set: creates a new label set, adding it to the list of available Label Sets.
2) Refresh the list of available datacubes, in case some datacubes have been recently
loaded/moved and don't appear in the list of available datacubes.

3) Build a training set out of Label Set.

4) Add a Label Set to an existing Training Set.

Below the toolbar, there is a combobox listing the existing Label Sets.

Below the combobox, there is the check list of available Training Datacubes. This should
contain all the Training Datacubes showed in the Object TreeView, if it does not, the user
can force an update by clicking on the Refresh button in the toolbar. Each Training
Datacube can or not partecipate in a Label Set, and this is determined by whether it is
checked or not. If a Training Datacube is not checked, the user will not be allowed to add
labelled samples from that Training Datacube. Otherwise, selected labelled samples from
that Training Datacube can be added. If a Training Datacube is un-checked after samples
from it where added to the Label Set, those samples will be removed from the Label Set.

Below the list of Training Datacubes is a control to select the number of labels. This
controls how many different labels can be assigned to the points. When then number of
labels is decreased, already assigned labels are not erased, but they will not be considered
when building a training set.

8.iv Constructing a Label Set

1. Add/move the datacubes that you want to use in the Label Set to the Training
Datacubes group.

2. If a Label Set does not exist, create a new one by pressing the New button in the Train
toolbar.

3. In the check list of Datacubes involved check the Training Datacubes that will
partecipate in the Label Set (can be changed at any later time). If the list does not
contain all the available Training Datacubes, click the Refresh icon in the toolbar to
force an update in the list.

4. Select the number of labels that will be used in the Label Set.

5. The screen may look like this:
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6. To add sample to a certain class, click on the Datacube Browser: the mouse cursor will
become a crosshair, and every click will define a vertex of the polygonal region you
are selecting. When you are finished selecting the region, double-click, or press Enter.

==

cedE|( 2 eo
800

7. To add the selected samples to the Label Set with a certain label, simply pressthe
button in the Labels Palette on the Training page corresponding to the label you want
to assign. The selected region will be colored with a color corresponding to the label.

8. If you are unhappy by any part of your selection, simply select a region that you want
to remove, and click the Un-select button in the Labels Palette: all the samples in the
selected region, regardless of whichever class they were assigned to, will be removed
from the Label Set.
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9.

When you are happy with your selections, press the Build button in the Train page

Hardwars nat connecte

toolbar to build a Training Set. The training set you will create will be added to the
group of Training Sets and displayed in the corresponding page of the Object

PageViewer.
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9 The Main Toolbar

9.i Overview

The main toolbar contains buttons to perform most of the available actions on the objects
inside HyperSpectral Explorer.
a) <L |2 |u|-m|a] L

= =

3| x

Here is a description of their functionality, from left to right.

9.ii Open

Opens a Matlab, HSE or pnd file. The same as the command accessible from the main
menu: File-Open.

9.iii Save

The same as the command accessible from the main menu: File-Save.

9.iv Add to groups

Used to copy an object to a different group. For example a daata cube in the “Datacubes”
group could be moved to the “Training Datacubes™ group.

9.v Expand on a basis

Used to project a given data cube or set of vectors onto a basis object. Select the object to
be projected in the Object TreeView, and then the basis to project onto from the drop-
down menu of the toolbar.

9.vi Apply nonlinear map

Used to apply to a nonlinear map object to a data cube or set of vectors. Select in the
Object TreeView the object the map should be applied to, and then the nonlinear map to
apply from the drop-down menu of the toolbar.

9.vii Extract labelled subset

Extracts a subset of a training set or in general of a set of vectors with labels, based on a
choice of labels. Very useful if one wants to study further one class obtained through
some classifier: this class can be extracted using this feature and then further processed
with any algorithm.

9.viii Classification to training set

Converts a classification object into a training set, i.e. a set of vectors with the labels
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assigned by the classifications.

9.ix Extract regular subset

Allows to extract a subset from a data cube in a regular fashion, allowing to downsample
the set in a geometrically sensible way. For example one can discard all even rows and
columns in the x and y coordinates and keep only one sample every 8 in the spectral
dimension.

9.x Extract random subset

Extracts a random subset from a data cube. Can be used to downsample randomly a data
set, run a learning algorithm on the random subset (due to memory and/or time
constraint), and then, if possible, extend the results from the random subset to the whole
set. This is tipically done, for example, in order to compute the Laplacian eigenfunctions
(see the example in this user's guide).

9.xi Extract basis subset

Allows the user to pick only a few vectors out of the collection of vectors in a basis
objects. For example, after computing the principal components, one may want to keep
only the few top vectors. Same would happen for LDB basis vectors.

9.xii View variable description

Shows a description of the currently selected object in the Object TreeView.

9.xiii View variable log
Shows the log of the actions performed on the selected object in the Object TreeView.

9.xiv View application log
Show the log of the actions performed by the whole application.

9.xv Delete selected object
Deletes the object selected in the Object TreeView.
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10 Files and Names of Variables

10.i Names of variables

Names of variables can only contain letters, numbers and underscores, and cannot begin
by a number. In particular, spaces, deshes, columns, dots, commas etc...are not allowed in
any variable name.

10.ii File names

File names are subject to the same rules as variable names. Note that this poses
considerable restrictions on filenames with respect to the Universal Naming Conventions

standards.

PLAIN SIGHT SYSTEMS — CONFIDENTIAL AND PROPRIETARY



11 Algorithms
11.i Layout and getting help

This is how the Algorithm page may look like. Differences from the look on your system
are due to different configuration, installation or system settings.

The Algorithm page ontains itself several pages, one per available algorithms.

Refresh list of inputs.

Access training page

Inputs to algorithm Help button

Algorithms n ‘Snnific tion

Nearest Neighbor Classifier

. him pages |put -
List of : j
&
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Parameters of the algorithm
Run the algorithm

Different sets of algorithm may be installed on your system.
Technical Note: Algorithms can be designed so that they plug-in quite naturally into
the HSE engine, and we are considering releasing tools that will make this process

PLAIN SIGHT SYSTEMS — CONFIDENTIAL AND PROPRIETARY



accessible to third parties.

Every algorithm page has its own title, a small toolbar with a refresh and a help button,
an area for input selection, an area for parameter selection, and a run button at the very
bottom.

The refresh button refreshes the list of available input parameters, when this is not
synchronized with the actual object list.

The help button provide algorithm specific help on what the algorithm does, on its
input parameters, etc.

Example. The algorithm Principal Components snapshot above. There is only one
input category for this algorithm, described as “datacubes”. The object category from
which admissible input objects can be selected is of course “Datacubes”. These objects
are listed (if the list is not updated, just press the refresh button), and the user can
select one or more datacubes to which to apply the algorithm. The algorithm will be
applied to each input datacube, in a serial fashion. The parameter section includes the
two parameters to the algorithm: the number of principal components to compute and
how many random samples to use for the computation. When the user presses 'Run'
after selecting the input objects and the selected the desired parameters, he will be
asked for the name of the (one) output object. Should the algorithm have more than
one output, the names of all the outputs would be asked, one at a time. The output is a
basis, and it will automatically added to the correct category when the algorithm
returns it.

Inputs

The input parameters area contains a set of controls that allow the user to select which
objects should be input to the algorithm. Many algorithms have just one input of one type,
but in general an algorithm can have many inputs. Inputs are divided by “conceptual role”
in the algorithm, inputs with the same “conceptual role” come from the same object
category, and can be a single object or multiple objects from the category, depending on
the algorithm.

Parameters

This section of the User Interface allows the user to select the desidered parameters for
the algorithms. The role and admissible range of each parameters are detailed in the help
to the algorithm, which can be obtained by pressing the help button on the algorithm's
toolbar.

Outputs

Just before running, the algorithm will ask the user for the name(s) of the output variable
(s). After the algorithm is run, the output objects will be added to the set of avilable
objects, each in the appropriate category.
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11.ii Basic manipulations

Short Description

Basic manipulations on a vector set

Detailed Description

Allows to perform various basic manipulations of a vector set or a data cube, such as a
adding a constant, and thresholding from below and above. The operations are performed
in the order in which they are listed.

Parameters
Label Description
Absolute value Takes the absolute value of all the vector components of each vector.

Add Constant  Adds a constant to all the vector components of each vector.

Threshold Sets to the specified threshold all the elements below the specified

below threshold.

Egizh()ld Sets to the threshold all the elements above the specified threshold.
Inputs

Name Description Multiplicity

Vector Set The vector set to be operated upon. 0

Outputs
Name Description Multiplicity

The result of the manipulation of the input vector

Output Vector Set Vector Set

References
Label Title
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11.iii Calculator

Short Description
Calculator between data cubes.

Detailed Description

Allows various computations to be done on datacubes.

Parameters
Label Description

The operation to be performed on the two datasets

« +:Sum of the two vector sets.
Operation to perform « -:Difference of the two vector sets.

*:Product of the two vector sets.

/:Ratio of the two vector sets. Division by 0 yields 0..

Inputs
Name Description Multiplicity
Vector Set 1 The set of points for the first operand. 1
Vector Set 2 The set of points for the second operand. 1
Outputs
Name Description Multiplicity

The result of the operation between the two

Output Vector Set datacubes.

1

References
Label Title
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11.iv Unsupervised Hierarchical Clustering

Short Description

Finds clusters in dataset in an unsupervised way.

Detailed Description

Uses distance relationships between points, in a variety of metrics and with different
definitions of similarities between groups of points, to find clusters in the dataset. The
algorithm is randomized to allow the analysis of large datasets: one or more selections of
random groups are followed by a hirarchical clustering on each group, then the resulting
clusters are matched among the various sampling rounds to yield a more robust result.
The algorithm is in general badly affected by high dimensionality of the data, since it
based on distance computations of in general noisy data. Usually best results are obtained
by running this algorithm after an initial dimension reduction

Parameters
Label Description

The type of metric to use when discovering clusters. Please note that for the
density estimation the standard euclidean metric is always used, no matter
which type of density estimation.

- euclidean:standard euclidean distance.

+ seuclidean:standardized Euclidean distance, each coordinate in the sum
of squares is inverse weighted by the sample variance of that
coordinate.

Metri - cityblock:city block (or LMinfty) distance.

- mahalanobis:mahalanobis distance.

- minkowski:minkowski distance with exponent 2.

+ cosine:one minus the cosine of the angle between the samples (treated
as vectors).

- correlation:one minus the sample correlation between samples (treated
as sequences of values).

+ hamming:hamming distance, percentage of coordinates that differ.

- jaccard:one minus the Jaccard coefficient, the percentage of nonzero
coordinates that differ.
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Type of linkage between points to discover clusters

- single:.

Linkage - complete:furthest distance.
type - average:average distance.

- centroid:center of mass distance. N.B.: the output is meaningful
only if euclidean distance is used.

- ward:inner squared distance.

Number Of How many clusters to look for.

Classes

Number of

Random Determines how many random points per cycle are considered.

Points
How many clustering cycles to do; each cycle is on a different random

Number of ; . .

Cvcles subset of points, the clusters obtained from different cycles are then

Y matched across cycles to yield a coherent final labelling.

Density estimation for the test points. If nearest neighbor, allows to select
how many nearest-neighbors to consider when assigning a label to a test
point. If pdf estimation, the probability density is estimated with smooth
kernels around the training points.

- nearest neighbor:estimate the class densities by putting a point in

‘ _ a class if that class is the closest one to the point, where the
Estimation distance between a point and a class is the distance between the
Method point and the closest point in the class. N.B.: uses euclidean

metric for nearest neighbor, independently of the choice of the
parameter <Metric> above.

- decaying pdf:estimate the class densities by smooth interpolation
with a decreasing radial kernel. N.B.: the norm in the definition of
the dereasing kernel is euclidean, independently of the parameter
<Metric>.

Inputs
Name Description Multiplicity
Datacubes The datacubes to be clustered. 0
Outputs
Name Description Multiplicity

These datacubes (one per input datacube) are the
Classificatio classifications obtained from running the algorithm. The i-
ns th slice of each at each point is the probability of that point
belonging to the i-th cluster found.

Datacubes
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References

Label Title
[1] http://www.resample.com/xIminer/help/HCIst/HClst_intro.htm
[2] http://www.cs.umd.edu/hcil/multi-cluster/index.html
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11.v Laplacian Eigenfunctions computations

Short Description

Computes the Laplacian Eigenfunctions of the data set.

Detailed Description

Computes the Laplacian Eigenfunctions of the data set, by vieweing the dataset as a
weighted graph and computing the eigenfunctions of a version of the Laplace operator
restricted to the dataset. Various type of eigenfunctions can be computed, according to
the normalization type for the operator restricted to the dataset, and other parameters for
its computation (e.g. number of neighbors to consider, width of the kernel, precision
etc..). This is usually very useful for nonlinear dimensionality reduction, for discovering
interesting parametrization and low-dimensional embeddings of the data set. Clustering
algorithms are expected to perform better after the map derived from the Laplace
eigenfunctions is applied to the data since cluster are in general enhanced

Parameters
Label Description
Type of eigenfunctions: nearest-neighbor or gaussian.
‘ _ nn:uses (a symmetrization of) the kernel K(x,y)=1 if x is a k

EigenFunction nearest neighbor of y, K(x,y)=0 otherwise.

Type - gauss:uses (a symmetrization of) the kernel K(x,y)=e"(-||x-
y||/delta) if x is a k nearest neighbor of 'y, K(x,y)=0
otherwise..

How many eigenfunctions to compute. The maximum number is

Number of equal to the cardinality of the dataset, normally far fewer (tens or a

Eigenfunctions to few hundreds, independently of the cardinality of the dataset, and

compute only depended on some notion of complexity of the data) are

computed.
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Type of
Normalization

Which
EigenValues

Number of nn

Delta

Precision

Energy
Threshold

Maximum

number of
EigenValues

Inputs

How the operator on the dataset is normalized. In the following D(x,x)
is the sum of K(x,y) for all y's, D(x,z)=0 if z is not x, while W(x,y) is
the weights between x and y (1 if <Eigenfunction type>=="nn', a
weighted exponential if <Eigenfunction type>='gauss').

Laplace-Beltrami:the operator is normalized as in graph theory,
but the eigenfunctions are rescaled and are the same as the
normalization D" {-1}*(D-W). The advantage of this
normalization is that the problem is symmetric..

D™M-1/2} *(D-W)*D”{-1/2} :the operator is normalized as in
graph theory. The problem is symmetric, but the oeprator is not
an averaging operator, and it does not coincide in general with
the Laplace-Beltrami operator on a manifold..

D™ {-1}*(D-W):the operator is averaging on the set, but the
problem is not symmetric. Its eigenfunctions are the same as
"Laplace-Beltrami", but in that case they are computed via a
symmetric problem..

D-W:the operator is symmetric but not averaging, the density
of points is not normalize out.

W:no normalization.

Which eigenvalues should be computed: small or large.

small:compute the small eigenvalues (they start from 0 up).
large:compute the large eigenvalues.

Number of nearest neighbors to consider in the computation of the
eigenfunctions. Should be large enough especially if <EigenFunction
Type> is 'gauss', but not large, especially if <EigenFunction Type> is
'nn', otherwise the graph considered is complete.

Scale of the operator. This has no effect if the Eigenfunction Type is
'nn', while it affects the width of the gaussian kernel when
EigenFunction Type is 'gauss'. The gaussian kernel is written in the
form e"((-|[x-y|//delta)"2).

Precision of the computations when EigenFunction Type is 'gauss'.

Keep only enough EigenValues to cover the given fraction of total
energy. The total energy is estimated only on the parameter "Number
of EigenFunctions to compute".

Maximum number of EigenValues to compute.
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Name Description Multiplicity

Vector Set The set of points on which to compute the eigenfunctions. 1

Outputs
Name Description Multiplicity
EigenMap The ElgenMap associated with the computed 1
Eigenfunctions
EigenMap The image under the Eigenmap of the input <Labelled 1
Images Training Set>.
References
Label Title

S. Lafon, R.R. Coifman, Geometric Harmonics, Tech Report, CS Dept., Yale
(1] University, 2003
Y,

2] S. Lafon, R.R. Coifman, Diffusion Maps and Geometric Harmonics, Tech
Report, CS Dept., Yale University, 2004

R.R. Coifman, M. Maggioni, Multiresolution Analysis associated to diffusion
[3] semigroups: construction and fast algorithms, Tech Report, CS Dept., Yale
University, 2004
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11.vi Local Discriminant Bases

Short Description

Finds local features that well discriminate the classes as labelled in the training set.

Detailed Description

Uses fast Fourier and wavelet algorithms to look up a dictionary for feature vectors that
well-discriminate between the classes in the Labelled Training Set [1]. Offers several

choice of libraries of bases, based on windowed local cosines, wavelets and other filter
banks.

Parameters
Label Description

Determines which discrimination measure and cost are associated

o with each the projection of the points onto a feature.
Discrimination ] ) )
Measure «  SRE:symmetric KL distance on the coefficients.

ARE:asymmetric KL distance on the coefficients.
SED:Square Euclidean Distance on the coefficients.

Determines in which dictionary to search the feature vectors:
options include various wavelet packet dictionaries and sine and
cosine libraries.

Haar:Haar wavelets.
Beylkin:Beylkin wavelets.

Features « Coiflet:Coifman wavelets (maximum number of vanishing
moments).
Daubechies:Daubechies compactly supported wavelets.
Symmlet:Symmlet wavelets, which are 'maximally
symmetric'.
Vaidyanathan:Vaidyanathan filters.

Determines whether to use the most flexible Haar-Walsh tiling of

Anisotropic Ldb the time-frequency plane.

Inputs
Name Description Multiplicity

The set of vectors with labels to be used for training set.
The vectors are all of the same dimensions, while the labels 1
are integer numbers starting from 1.

Labelled
Training Set

Outputs
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Name Description Multiplicity

Set of feature vectors. These are vectors in the same space as
Feature  the vectors in the Labelled Training Set which are the most
Vectors  discriminant (according to the selected criterion) among the
vectors in the chosen dictionary.

References

Label Title

N. Saito, R.Coifman, F.B. Geshwind, and F. Warner, Discrminant feature
[1] extraction using empirical probability density estimation and a local basis
library, Pattern Recognition, 2002
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11.vii Nearest Neighbor Classifier

Short Description

Basic nearest neighbor classifier.

Detailed Description

Nearest neighbor classifier assigns to a point the label that appears most often among the
k nearest neighbors of the point. It is a very basic classifier, but it asymptotically (in the
number of points) close to the Baysian classifier. It is quite efficient in low dimension,
but in general quite enreliable in high dimensions, since it is very avversely affected by
noisy distance computations.

Parameters
Label Description

Estimation Specifies how many nearest neighbors are used to vote for the label of a
Method test point

Specifies which metric to use to find the nearest neighbors. Either the
standard euclidean metric in the dimension of the data or the "maximum"
) metric (the distance between two points being the maximum of the
Metric distances of the projection on any coordinate axis) can be specified.

euclidean:use Euclidean metric.
maximum:use maximum or L"\infty metric.

Inputs
Name Description Multiplicity
This is the set of labelled training points. To estimate the
Labelled . SR ..
Training label of a test point, the nearest points in this training set are
Set determined, and the label most represented among them is
chosen as the label of the test point.
Classify  These are the datacubes to classify. 0
Outputs
Name Description Multiplicity
. . These are the classification datacubes: the i-th slice of the
Classificatio o . .
ns datacube represents the probability that the point belongs  Classify
to class i.
References
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Label Title
[1] http://www.cs.sunysb.edu/~algorith/files/nearest-neighbor.shtml
[2] http://www.physik3.gwdg.de/tstool/index.html

11.viii Nearest Neighbor Projection

Short Description
Maps to the set of distances from training classes.

Detailed Description

Given a training set consisting of k training classes, and a set of test vectors, this
algorithms computes the map that maps each test vector in the vector of distances from
each of the k training classes. Various options for which distance to use are given,
including nearest point distance, further point distance, average distance, distance from
approximate linear subspace and so on. The choice of distance is application, data set
and objective dependent, and in general it greatly affects the result of the algorithm

Parameters
Label Description

Specifies the metric to use when measuring distances between a point x and
aset A.

min:d(x,A) is the distance (measured according to <Metric>) between
x and the closest point to x in A.

max:d(x,A) is the distance (measured according to <Metric>)
between x and the farthest point to x in A.

Point to « mean:d(x,A) is the average distance (measured according to
set <Metric>) between x and the points in A.
metric « center:d(x,A) is the distance (measured according to <Metric>)

between x and the center of A.

subspace:d(x,A) is the norm of the component of x orthogonal to the
subspace spanned by A. The subspace spanned by A is defined by A
and some tolerance (e.g. because of noise), and is the one spanned by
the top principal components of the datapoints in A truncated by
tolerance..
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Estimation
method

Metric

Inputs

Name

Specifies how many nearest neighbors are used to vote for the label of a
test point

Specifies which metric to use to find the nearest neighbors. Either the
standard euclidean metric in the dimension of the data or the "maximum"
metric (the distance between two points being the maximum of the
distances of the projection on any coordinate axis) can be specified.

euclidean:Standard Euclidean metric.

maximum:Maximum or L"\infty metric: the distance between two
points is given by the biggest of the absolute values of the
differences of the coordinates of the two points..

Description Multiplicity

This is the set of labelled training points. To compute the

Labelled  NN-projection of a test point, the nearest points in this
Training  training set are determined, and the i-th coordinate of the 1
Set result point is the distance from the closest training point in
class i.
NN- .
. These are the datacubes to be NN-project-ed. 0
project
Outputs
Name Description Multiplicity
NN- This is the nonlinear NN-Projeection Map learnt from the
Projection training set. It can be applied to any data (living in a 1
Map corectly dimensioned ambient space).
NN- These are the NN-projections of the datacubes chosen in NN-proiect
Projections the input "NN-project". pro]
References

Label Title
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11.ix Spectra Normalization

Short Description

Normalizes the spectra of a data cube in various ways.

Detailed Description

Basic algorithms can be used to normalize the spectra in several ways.

Parameters
Label Description
Type of normalization to be applied to all the spectra in the datacube,
one by one.
- Linear01:Maps the range of each spectrum linearly onto
Normalization [0,1]..
Type « L2:Normalizes each spectrum so that its Euclidean length, or

energy, is equal to 1..
Mean + L2:Normalizes each spetrum so that its average is 0
and its Euclidean length, or energy, is equal to 1..

Inputs
Name Description Multiplicity
Datacube The data cubes whose spectra need to be normalized. The 0
s user can specify one or more data cubes.
Outputs
Name Description Multiplicity
Normalized The data cubes resulting from the normalization
Datacubes
Datacubes process.
References
Label Title
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11.x Principal Component Analysis

Short Description

Computes the principal components of the set of points

Detailed Description

Computes the principal components of the set of points [1,2,3]. These can be defined as
the axes of maximum variance of the set of points. The algorithm is randomized in order
to allow the computation for large datasets: a random subset is selected and its principal
components are computed and returned. The size of the random subset is specified as a
parameter by the user. The user also specifies the number of principal vectors to be
computed. Because of randomization, if the random subset is small, in general one can
expect a good relative estimate for the top eigenvectors, but not for the eigevectors
except the few top on

Parameters
Label Description
Number of principal components to compute and return, expressed as a
Number of o .
, percentage of the total number of principal components (which is the
PC's . . :
same as the dimensionality of the space).
Size of Specifies the size of the random subset of points actually used for the
random computation, expressed as a percentage of the total number of samples
subset available.
Inputs
Name Description Multiplicity
Datacube The datacubes whose principal components need to be 0
S computed, one datacube at a time.
Outputs
Name Description Multiplicity
SVD Basis The principal components of the data set. Datacubes
References
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Label Title
[1] Golub, Matrix Computations

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
[2] Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User's Guide

[3] Numerical recipes in C, www.nr.com

PLAIN SIGHT SYSTEMS — CONFIDENTIAL AND PROPRIETARY



12 File Format Description

Hyperspectral Explorer can load files of the following types:
- Matlab files, properly formatted as specified below.

- HSE files: these are header files that are created when saving files from HyperSpectral
Explorer in his own format, and is linked to Matlab files actually containing the data.

- PND files: these are files saved from NSTIS application by Plain Sight. Seamless
integration between NSTIS actually allows to transfer automatically files from NSTIS
application to HyperSpectral Explorer, via the File->Export command in the NSTIS
application.

- ENWVI files: these are a widespread format for hyperspectral images.

12.i Matlab files

Hyperspectral Explorer loads files saved from Matlab, with extension .mat, and satisfying
the characteristics described below.

Let the filename be <Filename.mat>.

If a datacube is stored in the file <Filename.mat>, then this file should contain a Matlab
variable called <Filename>. This variable should be a structure, containing a field named
<Data>. This field contains the datacube values, as a 3 dimensional array, whose
coordinates are X,Y,S, i.e. The two spatial coordinates first, and the spectral coordinate
third.

If a training set is stored in the file <Filename.mat>, then this file should contain a Matlab
variable called <Filename>. This variable should be a structure, containing a field named
<Data> and a field named <Labels>. The field named <Data> should be a 2 dimensional
array N by S, each row representing a spectrum in the training set. The field named
<Labels> should be a 1 dimensional column vector of length N, the i-th entry
representing the label (an integer number greater than 0) of the i-th spectrum in the field
<Data>.

12.ii ENVI files

ENVI is a widespread file format for hyperspectral images. There are two ENVI files for
each hyperspectral cube: a header file and a data file. The header file contains a
description of the data, and other useful information (e.g. it may contain information
about the frequency range, the date of collection etc...). The datafile contains the
hyperspectral cube.

Hyperspectral Explorer will import ENVI files that have both header and the
corresponding data file. The header should have extension .hdr, and the data file should
have extension .img. When a file is loaded, a dialog with the header information of the
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file is displayed.

The file is loaded into a Matlab structure that contains both the data and the description
from the header file, which is thus accessible anytime by accessing the varaible from the
Matlab command window Hyperspectral Explorer is connected to.

12.iii HSE files

These files are created when saving variables from the Hyperspectral Explorer
workspace. These files are header files, and contain pointers (file names with path
information) to Matlab files, as described above, that actually contain the data. If the
Matlab files pointed to from inside the HSE file are moved or deleted or modified, the
HSE file will become unusable.

12.iv PND files

These files are the default output when saving hyperspectral data from the NSTIS
application by Plain Sight.

PLAIN SIGHT SYSTEMS — CONFIDENTIAL AND PROPRIETARY



ERROR
Error E0001: could not
connect to Matlab

wrapper server.

Error E0002: could not
connect to Matlab server
(error code:-3)

Error E0003: failed to add
the datagroup <name> to
the datagroup server.

Error E0004: some
resources could not be
freed. You may have to
shut down Matlab
manually.

Error EO0005: failed to
load algorithm (algorithm
number xx).

13 Error Description Table

CAUSE

The Matlab wrapper server, in the DLL file
MatlabEngineWrapper.dll is not correctly
registered.

The Matlab wrapper server failed to connect to
the Matlab server. Either Matlab is not properly
installed, or Matlab license server is not
connected, or the user does not have enough
privileges to connect to Matlab.

One of the data groups could not be created. The
application definition file has been modified
incorrectly.

While disconnecting to Matlab and closing the
application, HyperSpectral Explorer could not
free all the objects allocated by Matlab, and/or
could not disconnect from the Matlab engine.

At startup HyperSpectral Explorer connects to
the various algorithms available. One such
algorithm was not available, or its configuration
file was not available or was not correctly
formatted.

SOLUTIONS

Reinstall Hyperspectral Explorer.

For the more advanced wuser: run regsvr32
<dir>/MatlabEngineWrapper.dll to re-register the
Matlab wrapper server

Reinstall Matlab and Hyperspectral Explorer.

For the more advanced user: re-register the Matlab
server manually. To do so, either read the
instruction in the Matlab help, or simply run:
Matlab /regserver

from the Matlab binary directory to re-register the
Matlab server.

Restore the original application configuration XML
file AppDefxml, or re-install HyperSpectral
Explorer to restore it.

If a “Matlab Command Window” is open, or
present in the taskbar, close it manually. If Matlab
does not close, go to the Task Manager (right-click
on the taskbar, and select Task Manager), go to the
“Processes” tab, and terminate the Matlab process.

Restore the application definition file Appdef.xml
and all the algorithm definition files in the
Algorithms directory. If not available, reinstall
HyperSpectral Explorer

E0006: failed to load the
datagroups.

The application definition file Appdef.xml is not
properly formatted.

Restore the original application configuration XML
file AppDefxml, or re-install HyperSpectral
Explorer to restore it.
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